24m^2+94m+28=0

Simple and best practice solution for 24m^2+94m+28=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24m^2+94m+28=0 equation:


Simplifying
24m2 + 94m + 28 = 0

Reorder the terms:
28 + 94m + 24m2 = 0

Solving
28 + 94m + 24m2 = 0

Solving for variable 'm'.

Factor out the Greatest Common Factor (GCF), '2'.
2(14 + 47m + 12m2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(14 + 47m + 12m2)' equal to zero and attempt to solve: Simplifying 14 + 47m + 12m2 = 0 Solving 14 + 47m + 12m2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. 1.166666667 + 3.916666667m + m2 = 0 Move the constant term to the right: Add '-1.166666667' to each side of the equation. 1.166666667 + 3.916666667m + -1.166666667 + m2 = 0 + -1.166666667 Reorder the terms: 1.166666667 + -1.166666667 + 3.916666667m + m2 = 0 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + 3.916666667m + m2 = 0 + -1.166666667 3.916666667m + m2 = 0 + -1.166666667 Combine like terms: 0 + -1.166666667 = -1.166666667 3.916666667m + m2 = -1.166666667 The m term is 3.916666667m. Take half its coefficient (1.958333334). Square it (3.835069447) and add it to both sides. Add '3.835069447' to each side of the equation. 3.916666667m + 3.835069447 + m2 = -1.166666667 + 3.835069447 Reorder the terms: 3.835069447 + 3.916666667m + m2 = -1.166666667 + 3.835069447 Combine like terms: -1.166666667 + 3.835069447 = 2.66840278 3.835069447 + 3.916666667m + m2 = 2.66840278 Factor a perfect square on the left side: (m + 1.958333334)(m + 1.958333334) = 2.66840278 Calculate the square root of the right side: 1.633524649 Break this problem into two subproblems by setting (m + 1.958333334) equal to 1.633524649 and -1.633524649.

Subproblem 1

m + 1.958333334 = 1.633524649 Simplifying m + 1.958333334 = 1.633524649 Reorder the terms: 1.958333334 + m = 1.633524649 Solving 1.958333334 + m = 1.633524649 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-1.958333334' to each side of the equation. 1.958333334 + -1.958333334 + m = 1.633524649 + -1.958333334 Combine like terms: 1.958333334 + -1.958333334 = 0.000000000 0.000000000 + m = 1.633524649 + -1.958333334 m = 1.633524649 + -1.958333334 Combine like terms: 1.633524649 + -1.958333334 = -0.324808685 m = -0.324808685 Simplifying m = -0.324808685

Subproblem 2

m + 1.958333334 = -1.633524649 Simplifying m + 1.958333334 = -1.633524649 Reorder the terms: 1.958333334 + m = -1.633524649 Solving 1.958333334 + m = -1.633524649 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-1.958333334' to each side of the equation. 1.958333334 + -1.958333334 + m = -1.633524649 + -1.958333334 Combine like terms: 1.958333334 + -1.958333334 = 0.000000000 0.000000000 + m = -1.633524649 + -1.958333334 m = -1.633524649 + -1.958333334 Combine like terms: -1.633524649 + -1.958333334 = -3.591857983 m = -3.591857983 Simplifying m = -3.591857983

Solution

The solution to the problem is based on the solutions from the subproblems. m = {-0.324808685, -3.591857983}

Solution

m = {-0.324808685, -3.591857983}

See similar equations:

| p=1.25(2)+3X | | -40=6s-8 | | 2x-32x=0 | | 7.5x+46=76 | | 2x+6=c | | 2v-8=14 | | g(x)=14*2 | | 9/10x=2/5 | | -16+t=-32 | | 5*1= | | 5(x-7)+8=2x+3(x-9) | | 3/4b-5/12=4/12 | | 5-x/3x | | 6x=3(x+4)forx | | 80+16x=15x-40 | | 2x^2-23x-39=0 | | 5-2(2y+6)= | | 5-Q/3Q | | 6x+14x=20 | | 0.4x=0.375x+1 | | -14x-12y=2 | | x^4-100x^3+25x^2-0.45=0 | | -2x-8-8x+2= | | -24=12/19x | | 18x+9-13x+3=-3 | | 0=-16t^2+128t-275 | | -2/5x-4-1 | | 5m-10m=-20 | | 8x-(6x-9)+(3x-2)=4-(7x-8) | | p=2y+x | | 8X+5=36 | | 2*-3-3y=-3 |

Equations solver categories